Уроки математики и физики (RU + UA)

понедельник, 8 октября 2018 г.

Test 3. Sloping lines


 1. Look at points on the straight line. Copy and complete the table below:

 а)  (2, 0), (3, 1), (4, 0), (5, 3);     
 b)  (2, 1), (3, 1), (4, 2), (5, 3);     
 c)  (2, 0), (3, 1), (4, 2), (5, 3);     
 d)  (2, 0), (3, 1), (4, 2), (5, 4).

 2. Find a rule connecting the x-coordinate and the y-coordinate.
y = ……
 а)  y = x – 2;     
 by = x – 4;     
 cy = x + 2;     
 dy = x + 4.

 3. Determine the intercepts of the line.
 аx-intercept (–100, 0), y-intercept (0, 250);     
 bx-intercept (250, 0), y-intercept (0, –100);     
 cx-intercept (100, 0), y-intercept (0, 250);     
 d)  x-intercept (–250, 0), y-intercept (0, 100).

 4. Determine the intercepts of the line.

y = –3x + 12

 аx-intercept (–12, 0), y-intercept (0, 4);     
 b)  x-intercept (4, 0), y-intercept (0, 12);     
 cx-intercept (12, 0), y-intercept (0, 4);     
 dx-intercept (4, 0), y-intercept (0, –12).

 5. Determine the intercepts of the line that passes through the following points.

(–6, 5); (–3, 3); (0, 1).

 а)  x-intercept (0, 1), y-intercept (1.5, 0);     
 bx-intercept (0, 1), y-intercept (1, 0);     
 cx-intercept (0, 1), y-intercept (2.5, 0);     
 dx-intercept (0, 1), y-intercept (0.5, 0).

 6. What is the slope of the line?
 а)  0;      b)  1;     
 c)  6;      dundefined.

 7. Find the equation of the line.
 а)  y = –x – 5;     
 by = x + 5;     
 cy = –x + 5;     
 d)  y = x – 5.

 8. Write an equation that represents the line.
 аy = –0,75x +– 2;     
 b)  y = 0,75x + 2;     
 cy = –0,75x + 2;     
 dy = 0,75x – 2.

 9. The equation of any straight line can be written in the form

y = mx + c

where m is the gradient and c is where the line crosses the y-axis.
Which lines below are parallel?

y = x + 2, y = 5 – x, y = 4x – 2, y = 2x + 4, y = 3 + 4x.

 аy = 3 + 4x, y = 5 – x;     
 by = 2x + 4, y = 4x – 2;     
 cy = 3 + 4x, y = x + 2;     
 d)  y = 3 + 4x, y = 4x – 2.

10. Write down the equations of the lines marked A, B and C.
 аA, x = 2; B, x = 41/2; C, x = –3;     
 bA, x = 1; B, x = 41/2; C, x = –2;     
 c)  A, x = 1; B, x = 41/2; C, x = –3;     
 dA, x = 1; B, x = 41/5; C, x = –3.

11. Write down the equations of the lines marked P, Q, R and S.
 а)  P, y = 1; Q, y = 31/2; R, y = –3; S, y = –11/2;     
 bP, y = 2; Q, y = 31/2; R, y = –3; S, y = –11/2;     
 cP, y = 1; Q, y = 31/6; R, y = –3; S, y = –11/2;     
 dP, y = 1; Q, y = 31/2; R, y = –3; S, y = –11/4.

12. The outside edge of Frank’s face is made by straight lines. Write down the equation of each line (2 of the lines will have the same equation).
 а)  y = 1, y = 5, y = 9, x = 1, x = 3, x = 7, x = 9;     
 by = 1, y = 4, y = 9, x = 1, x = 3, x = 7, x = 9;     
 cy = 1, y = 5, y = 9, x = 1, x = 2, x = 7, x = 9;     
 d)  y = 1, y = 5, y = 9, x = 1, x = 3, x = 7, x = 8.

Комментариев нет:

Отправить комментарий