ВИДЕОУРОК
Призму называют вписанною в цилиндр, если её основания вписаны в основания цилиндра, а боковые рёбра касательные цилиндра.
Из определения призмы, вписанной в цилиндр, вытекают её свойства:
– цилиндр можно описать вокруг прямой призмы, если её основанием является многогранник, вокруг которого можно описать окружность; при этом радиус цилиндра R равен радиусу этой окружности;
– высота Н призмы, которая соединяет центры окружностей, описанных вокруг основ, принадлежит оси цилиндра.
ПРИМЕР:
Можно или нет описать цилиндр вокруг прямой призмы, в основании которой лежит ромб, если он не является квадратом ?
РЕШЕНИЕ:
Нет, так как вокруг ромба, который не является квадратом, нельзя описать окружность.
Призма, описанная вокруг цилиндра.
Касательной плоскостью цилиндра называют плоскость, которая проходит через касательную цилиндра и перпендикулярная к плоскости осевого сечения, в котором находится касательная цилиндра.
При этом цилиндр называют вписанным в призму, так как касательные цилиндра перпендикулярные к плоскости оснований, и боковые грани призмы, в которых находятся касательные, также перпендикулярные к плоскости оснований, то есть призма, описанная вокруг цилиндра, будет прямой.
– цилиндр можно вписать в прямую призму, если её основания будут многогранники, в которые можно вписать окружности; при этом радиус цилиндра r равен радиусу этой окружности;
– высота Н призмы, которая соединяет центры окружностей, вписанных в основания, принадлежит оси цилиндра.
Формулы вычисления радиуса r описанной окружности.
ЗАДАЧА:
Вокруг цилиндра, высота которого равна 5 см, описали четырёхугольную призму, три стороны которой в порядке следования равны
3 см, 4 см и 7 см.
Найти площадь боковой поверхности призмы.
РЕШЕНИЕ:
Обозначим неизвестную сторону четырёхугольника основания х. Так как этот четырёхугольник описан вокруг окружности, то
3 + 7 = 4 + х,
Sбок = P × l
где, Р – периметр основания,
ОТВЕТ: 100 см2.
ЗАДАЧА:
В цилиндр вписана правильная
шестиугольная призма. Найдите угол между диагональю её боковой грани и осью
цилиндра, если радиус основания равен высоте цилиндра.
РЕШЕНИЕ:
Боковые грани – квадраты, так как сторона правильного шестиугольника, вписанного в окружность, равна радиусу. Рёбра призмы параллельны оси цилиндра, поэтому угол между диагональю грани и осью цилиндра равен углу между диагональю и боковым ребром. А этот угол равен 45°, так как грани – квадраты.
ЗАДАЧА:
Правильная
четырёхугольная призма описана около цилиндра, радиус основания которого
равен 0,5. Площадь боковой
поверхности призмы равна 8. Найдите высоту цилиндра.
РЕШЕНИЕ:
2 ∙ 0,5 = 1.
Так как все боковые грани призмы равны, то площадь одной
грани равна
8 : 4 = 2.
Каждая грань представляет собой прямоугольник,
следовательно, её площадь равна произведению бокового ребра призмы на сторону
основания (квадрата). Следовательно, боковое ребро призмы равно:
2 : 1 = 2.
Высота цилиндра равна боковому ребру призмы,
следовательно, она равна 2.
ЗАДАЧА:
В цилиндр вписан правильный параллелепипед. Найдите
площадь полной поверхности этого параллелепипеда, если радиус цилиндра 10
см, а высота 20
см.
РЕШЕНИЕ:
АА1 ∥ ВВ1 ∥ СС1 ∥ DD1 ∥ ОО1.
ОО1 ⊥ (АВС),
ОО1 ⊥ (А1В1С1),
АО = ВО = СO = DО = R = 10 см,
тоді АВ = 10√͞͞͞͞͞2 см.
Sп
= Sб
+ 2Sосн = P∙
H + 2SABCD
=
= 4
∙ 10√͞͞͞͞͞2 ∙
20 +
2(10√͞͞͞͞͞2)2 =
= 800√͞͞͞͞͞2 +
400 = 400(2√͞͞͞͞͞2 +
1)
(см2).
ОТВЕТ: 400(2√͞͞͞͞͞2 +
1) см2
ЗАДАЧА:
Вокруг цилиндра описана правильная четырёхугольная
призма, площадь боковой поверхности которой равна Q. Найдите площадь боковой поверхности
цилиндра.
РЕШЕНИЕ:
Если правильная четырехугольная призма описана вокруг
цилиндра, то круги основания цилиндра, вписанные в основания призмы, –
квадраты, центры оснований цилиндра – точки пересечения диагоналей квадратов,
боковое ребро призмы равно образующей цилиндра и является высотой призмы и
цилиндра. Отметим сторону квадрата а, радиус цилиндра r, высоту призмы и цилиндра Н.
Sб.пр. = Q,
Sб.пр. = P∙ H = 4a ∙ H = Q,
Sб.ц. = 2πrH, а = 2r.
Маємо:
4a ∙ H = Q, 4∙ 2rH = Q,
2rН = Q/4,
тоді
Sб.ц. = π ∙ 2RH = π∙ Q/4
ОТВЕТ: π∙ Q/4
Решение задач с применением
тригонометрии.
ЗАДАЧА:
В цилиндр вписана треугольная призма, основанием которой
является прямоугольный треугольник с катетом
а и прилежащим к нему острым углом α.
Диагональ грани призмы, в которой находится эта сторона треугольника, наклонена
к плоскости основания под углом β.
Найдите площадь боковой поверхности цилиндра.
РЕШЕНИЕ:
АВСА1В1С1, ∠ С = ∠ С1 = 90°.
Тогда ∆ АВС и ∆
А1В1С1 вписаны в круги оснований цилиндра, О и О1 –
середины гипотенуз АВ и А1В1, боковые ребра призмы являются образующими цилиндра,
∠ ВАС = α, АС = а,
АА1 ∥
ВВ1 ∥ СС1 ∥ DD1,
АА1 ⊥ (АВС),
А1С –
наклонная, АС – проекция,
- Урок 1. Прямые и плоскости в пространстве
- Урок 2. Прямая призма
- Урок 3. Наклонная призма
- Урок 4. Правильная призма
- Урок 5. Параллелепипед
- Урок 6. Прямругольный параллелепипед
- Урок 7. Куб
- Урок 8. Пирамида
- Урок 9. Правильная пирамида
- Урок 10. Усечённая пирамида
- Урок 11. Цилиндр
- Урок 13. Конус
- Урок 14. Усечённый конус
- Урок 15. Вписанная и описанная пирамиды
- Урок 16. Сфера и шар
- Урок 17. Комбинация тел
Комментариев нет:
Отправить комментарий