Возвести дробь до n-й степени означает перемножить n таких дробей:Чтобы возвести алгебраическую дробь в какую-нибудь
степень, надо возвести в эту степень отдельно числитель и знаменатель и первый
результат разделить на второй.
n – степень деления чисел равна делению
n–х степеней
этих чисел.
ПРИМЕР:
ПРИМЕР:
Преобразовать дробь в степень.
РЕШЕНИЕ:
ПРИМЕР:
ПРИМЕР:
РЕШЕНИЕ:
Другие уроки:
- Урок 1. Рациональные алгебраические выражения
- Урок 2. Тождественные выражения
- Урок 3. Одночлены
- Урок 4. Умножение одночленов
- Урок 5. Возведение в степень одночленов
- Урок 6. Деление одночленов
- Урок 7. Многочлены
- Урок 8. Сложение и вычитание многочленов
- Урок 9. Умножение одночлена на многочлен
- Урок 10. Умножение многочленп на многочлен
- Урок 11. Вынесение общего множителя за скобки
- Урок 12. Способ группировки
- Урок 13. Произведение суммы двух чисел на их разность
- Урок 14. Разность квадратов двух чисел
- Урок 15. Квадрат суммы и квадрат разности двух чисел
- Урок 16. Преобразование многочлена в квадрат суммы или квадрат разности двух выражений
- Урок 17. Сумма и разность кубов двух чисел
- Урок 18. Куб суммы и куб разности двух чисел
- Урок 19. Применение различных способов разложения многочлена на множители
- Урок 20. Алгебраические дроби
- Урок 21. Сокращение дробей (1)
- Урок 22. Сокращение дробей (2)
- Урок 23. Сложение алгебраических дробей
- Урок 24. Вычитание алгебраических дробей
- Урок 25. Умножение алгебраических дробей
- Урок 26. Деление алгебраических дробей
- Урок 28. Возведение алгебраических дробей в целую отрицательную степень
- Урок 29. Преобразование алгебраических выражений
Комментариев нет:
Отправить комментарий