Чтобы извлечь корень из степени с чётным показателем,
достаточно представить подкоренное выражение в виде квадрата некоторого
выражения
Для любых
неотрицательных чисел а1 и а2 таких, что
а1 > а2, выполняется неравенствоДля любого действительного числа a выполняется равенство:
Для любого действительного числа а и натурального числа n выполняется равенство:
ПРИМЕР:
Представим х10 в виде
(х5)2,
то х5 < 0,
Найдём значение выражения:
Представим число 893 025 в виде произведения простых множителей, получим:
ПРИМЕР:
Другие уроки:
- Урок 1. Действительные числа
- Урок 2. Арифметический квадратный корень
- Урок 3. Квалратный корень из произведения и дроби
- Урок 5. Вынесение множителя из-под знака корня
- Урок 6. Внесение множителя под знак корня
- Урок 7. Избавление от иррациональности в знаменателе дроби
- Урок 8. Действия над радикалами
- Урок 9. Возведение в степень арифметических квадратніх корней
- Урок 10. Корень m-й степени
- Урок 11. Корень m-й степени из произведения
- Урок 12. Корень m-й степени из дроби
- Урок 13. Корень m-й степени из степени
- Урок 14. Вынесение множителя из-под знака корня m-й степени
- Урок 15. Внесение множителуй под знак корня m-й степени
- Урок 16. Действия над радикалами m-й степени
- Урок 17. Возведение в степень корня m-й степени
- Урок 18. Извлечение корня из корня m-й степени
- Урок 19. Избавление от иррациональности в числителе или знпменателе дроби
- Урок 20. Основное свойство радикала
- Урок 21. Преобразование выражений содержащих степени с положительными дробными показателями
- Урок 22. Преобразование выражений содержащих степени с отрицательными дробными показателями
Комментариев нет:
Отправить комментарий